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Abstract—A new topological model of camera network cov-
erage, based on a weighted hypergraph representation, is in-
troduced. The model’s theoretical basis is the coverage strength
model, presented in previous work and summarized here. Opti-
mal distribution of task processing is approximated by adapting
a local search heuristic for parallel machine scheduling to this
hypergraph model. Simulation results are presented to demon-
strate its effectiveness.

I. INTRODUCTION

Multi-camera systems have been studied extensively for

a wide variety of applications. Although centralized archi-

tectures for fusing and processing data from these multiple

sources are a natural extension of traditional computer vision

methods, such configurations are limited in scalability and

robustness. The increasingly popular distributed smart camera

network [1] paradigm is the answer to this challenge. In

such a system, each camera node possesses local processing

capabilities, and data is increasingly abstracted (and thus

increasingly compact) as it is communicated and processed

farther from its original source. Zivkovic and Kleihorst [2] give

an overview and analysis of smart camera node architecture

illuminating the benefits of this design.

Naturally, any initial image or video processing tasks which

require data only from a single node are assigned to that node.

However, if the nodes themselves are also responsible for

fusing and processing data from multiple sources – as they

must be, in a true distributed smart camera network – it is

less obvious where to assign such tasks.

Scheduling has been an active area of research for decades,

and algorithms solving a variety of different problems have

been used in such diverse applications as manufacturing and

distributed computing [3]. Formulating an appropriate schedul-

ing problem requires domain-specific knowledge; in our case,

an understanding of the underlying nature of a multi-camera

task.

The scale and performance of most tasks in multi-camera

networks (indeed, in sensor networks generally) are directly

related to the volume of coverage of the sensor(s) in question.

In previous work [4], we developed a real-valued coverage

model for multi-camera systems, inspired by task-oriented

sensor planning models from the computer vision literature [5]

and by coverage models used for various purposes in wireless

sensor networks [6], [7]. We demonstrate that, given a set

of a priori parameters of the multi-camera system and some

task requirements, this model accurately describes the true

coverage of a scene in the context of the task. In order that this

work be self-contained, we provide in Section II a reduced but

functionally complete description of the model. This provides

us with a basis for a priori quantitative characterization of

multi-camera tasks.

The next step is to abstract this understanding into a topo-

logical structure suitable for optimization over the network.

Our first contribution is a novel topological model for camera

network coverage using a hypergraph representation, described

in Section III. Devarajan and Radke [8] propose the vision

graph as a theoretical topological model for pairwise tasks in

camera networks; it has since been constructed and employed

in several such applications [9], [10]. Lobaton et al. [11],

[12] recognize the inadequacy of a graph for accurately

capturing topology, and generalize to a simplicial complex

representation. In the context of camera networks which may

be processing a coverage-bound task with data from arbitrary

combinations of sensors, we contend that only the hypergraph

representation is sufficiently general. Additionally, we define

a hyperedge weighting function which incorporates the salient

coverage information for optimization.

Our second contribution, detailed in Section IV, is the

characterization of the optimal task processing distribution

problem in the hypergraph framework, and the adaptation of a

local search heuristic from the scheduling literature [13] which

has been shown to exhibit good performance for this class of

problem.

We present simulated experimental results demonstrating

the method on a virtual network of 23 cameras in Section V.

Finally, we give some concluding remarks in Section VI.

II. COVERAGE MODEL

A. Stimulus Space

The sensor coverage model requires the definition of a

stimulus space to describe individual observable data. A visual

stimulus is localized to a point in three-dimensional space, and

also has a direction (normal to the surface on which the point

lies, i.e. view angle). We therefore define a directional space

as the stimulus space.

Definition 1: The directional space D
3 = R

3 × [0, π] ×
[0, 2π) consists of three-dimensional Euclidean space plus

direction, with elements of the form (x, y, z, ρ, η).
We term p ∈ D

3 a directional point. For convenience,

we denote its spatial component ps = (px,py,pz) and its

directional component pd = (pρ,pη).
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Fig. 1. Axes and Angles of D
3

A standard 3D pose P : R
3 → R

3, consisting of rotation

matrix R and translation vector T, may be applied to p ∈ D
3.

The spatial component is transformed as usual, i.e. P (ps) =
Rps +T. The direction component is transformed as follows.

If d is the unit vector in the direction of pd, then P (pd) =
(arccos(Rdz), arctan 2(Rdy,Rdx)).

B. Coverage Strength Model

The coverage strength model of a given sensor system

(which may be a single physical sensor or multiple sensors)

assigns to every point in the stimulus space a measure of

coverage strength.

Definition 2: A coverage strength model is a mapping C :
D

3 → [0, 1], for which C(p), for any p ∈ D
3, is the strength

of coverage at p.

Definition 3: The set 〈C〉 = {p ∈ D
3|C(p) > 0} is the

coverage hull of a coverage strength model C.

In order for the coverage strength model to offer a useful

gauge of sensor system performance, it requires the context of

a task.

Definition 4: A relevance model is a mapping R : D
3 →

[0, 1], for which R(p), for any p ∈ D
3, is the minimum desired

coverage strength or coverage priority at p.

The coverage strength model is defined in part by task

requirements, defined by a set of task parameters which

encapsualate various properties of the a posteriori quality of

sensed data. These parameters and a relevance model together

fully describe a task.

Given coverage strength and/or relevance models Ci and

Cj , we define their union and intersection, respectively, as

Ci ∪ Cj(p) = max(Ci(p), Cj(p)) (1)

Ci ∩ Cj(p) = min(Ci(p), Cj(p)) (2)

for all p ∈ D
3. This, together with Definition 3, implies that

〈Ci ∪ Cj〉 = 〈Ci〉 ∪ 〈Cj〉 and 〈Ci ∩ Cj〉 = 〈Ci〉 ∩ 〈Cj〉.
The k-coverage strength model for a subset of sensor

systems M ⊂ N , where |M | = k, is

CM =
⋂

m∈M

Cm (3)

The k-coverage strength model for the network is

Ck
N =

⋃

M∈(N

k)

CM (4)

where each M is a k-combination of N . Note that in the

common case where k = 1, (3) and (4) reduce to C1
N =

⋃

m∈N Cm.

C. Single-Camera Model

First, we present a single-camera parameterization of the

coverage strength model, for which the full theoretical deriva-

tion can be found in [4].

Given a task parameter γ indicating a margin in the image

(in pixels) for full coverage, the horizontal and vertical cross-

sections of the visibility component, CV , are given by

CV h(p) = B[0,1]





min
(

px

pz
+ sin(αhl), sin(αhr) −

px

pz

)

γh





(5)

CV v(p) = B[0,1]





min
(

py

pz
+ sin(αvt), sin(αvb) −

py

pz

)

γv





(6)

for γ > 0, where αhl and αhr are the horizontal field-of-view

angles, and αvt and αvb are the vertical field-of-view angles.

The complete CV is then given by

CV (p) =

{

min(CV h(p), CV v(p)) if pz > 0,
0 otherwise.

(7)

The resolution component, CR, is given by

CR(p) = B[0,1]

(

z2 − pz

z2 − z1

)

(8)

for R1 > R2, where the values of z1 and z2 are given by

(9), substituting task parameters R1 (ideal resolution) and R2

(minimum resolution), respectively, for R.

zR =
1

R
min

[

w

2 sin(αh/2)
,

h

2 sin(αv/2)

]

(9)

In the preceding equation, αh = αhl +αhr and αv = αvt +
αvb.

Given a task parameter cmax indicating the maximum ac-

ceptable blur circle diameter, the focus component, CF , is

given by

CF (p) = B[0,1]

(

min

(

pz − zn

z⊳ − zn

,
zf − pz

zf − z⊲

))

(10)

for cmax > cmin, where (z⊳, z⊲) and (zn, zf ) are the near and

far limits of depth of field as given by (11), substituting blur

circle diameters cmin and cmax, respectively, for c.

z =
AfzS

Af ± c(zS − f)
(11)

In the preceding equation, A is the effective aperture di-

ameter, f is the focal length, and zS is the subject distance.

Generally, cmin is equal to the physical pixel size, yielding the

depth of field for effectively perfect focus.

The direction (angle of view) component, CD, is given by

CD(p) = B[0,1]

(

Θ(p) − π + ζ2

ζ2 − ζ1

)

(12)



where ζ1, ζ2 ∈ [0, π/2] are task parameters indicating the ideal

and maximum view angles, respectively, and Θ(p) is defined

as

Θ(p) ≡ pρ −
(py

r
sinpη +

px

r
cospη

)

arctan

(

r

pz

)

(13)

where r =
√

p2
x + p2

y .

The full coverage strength model is simply the product of

these components:

C(p) = CV (p)CR(p)CF (p)CD(p) (14)

D. Multi-Camera System Model

A set of single-camera models may be placed in the context

of a world coordinate frame and a scene, and then combined

into multi-camera coverage models. Again, theoretical details

may be found in [4].

The six degrees of freedom of a camera’s world frame

pose P : R
3 → R

3 are called the extrinsic parameters of

the camera [14]. As discussed in Section II-A, P can be

extended to PD : D
3 → D

3. The in-scene model for a single

camera, then, is the single-camera model C with its domain

transformed to the world frame, defined by

Cs(p) = C(P−1
D (p)) (15)

for any world frame point p ∈ D
3.

Given a scene model S consisting of a set of plane segments

(which represent opaque surfaces in the scene), the point ps

is occluded iff the point of intersection between the line from

ps to the camera’s principal point and any plane segment in

S exists, is unique, and is not ps.

If V : R
3 → {0, 1} is a bivalent indicator function such

that V (ps) = 1 iff ps is not occluded from a given camera’s

viewpoint, then the in-scene model with static occlusion is

defined by

Co(p) = Cs(p)V (ps) (16)

for any p ∈ D
3, where ps is the spatial component of p, and

where Cs is given by (15).

Finally, the k-ocular multi-camera system model is com-

puted via (3) and (4).

E. Discrete Model

While it is feasible to compute the vertices of the coverage

hull 〈Co〉 of an in-scene camera coverage strength model with

occlusion directly from the parameterizations in Sections II-C

and II-D, the only obvious way to obtain 〈Co
M 〉, where |M | >

1, is to find
⋂

m∈M 〈Co
m〉. This involves finding the intersection

of arbitrary, generally non-convex polytopes given by vertices,

which has been shown to be NP-hard by Tiwary [15].

An arbitrarily close approximation can be achieved in the

discrete domain.1 A coverage strength model C has a discrete

counterpart denoted Ċ such that Ċ(p) = C(p) for all p ∈
Ḋ

3, where Ḋ
3 is a discrete subset of D

3 (once this subset

1Incidentally, this also greatly simplifies the computation of occlusion in
Co as per (16).

has been defined, it should be used consistently). We denote

the summation
∑

p∈Ḋ3 Ċ(p) as |Ċ|. Then, given Ċi and Ċj

sampled over the same discrete subset of D
3, Ċi ∩ Ċj can be

computed exhaustively.

III. COVERAGE TOPOLOGY

A. Mathematical Background

A hypergraph H is a pair H = (V, E), where V is a set

of vertices, and E is a set of non-empty subsets of V called

hyperedges. If P(V ) is the power set of V , then E ⊆ P(V )\∅.

A weighted hypergraph H = (V, E, w) also includes a

weight function over its hyperedges w : E → R
+. An

unweighted hypergraph may be interpreted as a weighted

hypergraph for which w(e) = 1 for all e ∈ E.

The degree of a vertex in H, denoted δH(v) for some v ∈ V ,

is the total weight of hyperedges incident to the vertex.

δH(v) =
∑

e∈E

{

w(e) if v ∈ e
0 otherwise

(17)

Following the definition of Frank et al. [16], a directed

hypergraph is a pair D = (V, ~E), where ~E is a set of hyperarcs;

a hyperarc is a hyperedge e ⊆ V with a designated head vertex

v ∈ V , denoted ev . The remaining vertices e\v are called tail

vertices. Two additional notions of vertex degree are defined:

the indegree, δi
H(v), is the total weight of hyperarcs of which

v is the head vertex, and the outdegree, δo
H(v), is the total

weight of hyperarcs of which v is a tail vertex.

An orientation Λ of an undirected hypergraph H has the

same vertex and hyperedge sets (and the same weight function,

if applicable), but assigns a direction (head vertex) to each

hyperedge. In an orientation of a simple hypergraph, if ev ∈ ~E ,

then eu ∈ ~E implies u = v (that is, e is unique). Therefore,

we omit the head vertex superscript in certain circumstances;

for example, the weight of ev is denoted simply w(e).

B. Coverage Hypergraph

The coverage hypergraph of a camera network N is the

hypergraph HC = (N, EC , wC). Its hyperedge set is defined

as

EC = {M ∈ P(N)|〈CM ∩ R〉 6= ∅} (18)

where CM is computed by (3) for a given task, R is a relevance

model for the task, and P(N) denotes the power set of N .

Intuitively, M ∈ EC indicates that nodes M have mutual

coverage of some region of D
3 with respect to R.

Theorem 1: EC is an abstract simplicial complex; that is,

for every M ∈ EC , and every L ⊆ M , L ∈ EC .

Proof: If n ∈ M , then by (3), CM = CM\n∩n. From (2),

for all p ∈ D
3, CM (p) ≤ CM\n(p). Then, from Definition

3, clearly 〈CM 〉 ⊆ 〈CM\n〉, and 〈CM ∩ R〉 ⊆ 〈CM\n ∩ R〉.
Thus, for every M ∈ EC , and every M\n ⊂ M , M\n ∈ EC .

The hyperedge weight function of HC , wC : EC → R
+, is

defined as

wC(M) = |ĊM ∩ Ṙ| (19)

for some discrete subset Ḋ
3 of the stimulus space.



Fig. 2. Example Camera Network Layout with Coverage Hypergraph

Theorem 2: For any L ⊆ M ∈ EC , wC(L) ≥ wC(M).
Proof: From the proof of Theorem 1, for all p ∈ D

3,

CM (p) ≤ CM\n(p), so |ĊM | ≤ |ĊM\n|. Thus, for every

M ∈ EC , and every M\n ⊂ M , wC(M\n) ≥ wC(M).
Consider a partial hypergraph HK

C = (N, EK
C , wC) of HC

with hyperedge subset

EK
C = {M ∈ EC ||M | ∈ K} (20)

where K ⊂ Z
+. When K = {k}, we term this the k-coverage

hypergraph of N . When K = {k, l}, we term this the k, l-
coverage hypergraph of N , and so on.

Since EC is an abstract simplicial complex, the 2-coverage

hypergraph H2
C is the (weighted) primal graph of HC , qual-

itatively equivalent to the vision graph as described in most

other sources. We formally define the vision graph as H2
C .

IV. TASK PROCESSING DISTRIBUTION

A. Problem Statement

Consider the portion of a k-ocular task in camera network

N which involves processing data from all of M ⊆ N , where

|M | = k; we shall term this an M -subtask. Only stimuli within

〈CM 〉 are relevant to an M -subtask. Given a relevance model

R for the task, the expected processing load for a given M -

subtask is proportional to |ĊM∩Ṙ|. Although this conjecture is

tautological given that R is arbitrary, since R ideally represents

the distribution of the stimuli necessary to perform the task,

it is reasonable to assume in general that it also reflects the

distribution of the processing load incurred by said stimuli.

This is supported by empirical evidence [4], [17].

Assuming that N consists of smart camera nodes with equal

local computational resources, the problem is to distribute the

processing of all M -subtasks over the nodes such that the

maximum load on any one node is minimized.

The set of eligible nodes to which M -subtasks may be

assigned is restricted to M , for the following reasons:

1) Robustness: If a node n ∈ M fails, the M -subtask can

no longer be processed. Thus, assigning it to any n ∈ M
carries no risk of disrupting service for valid models.

2) Locality: In a large network, because the sensing range

is finite, if 〈CM 〉 6= ∅, it is likely that nodes M are

physically proximate. Since we assume nothing about

the network structure, it is sensible to keep the M -

subtask processing node physically local for communi-

cation efficiency.

The usefulness of this restriction is especially apparent in the

special case k = 1, allowing camera-local subtasks (image

preprocessing, etc.) to be included in the accounting.

Given a K-ocular task, where K ⊂ Z
+, this problem can

be solved by finding an orientation of HK
C which minimizes

the maximum weighted indegree.

B. Minimum Indegree Orientation

The minimum maximum indegree orientation problem for

hypergraphs can be stated as follows. Given a simple, undi-

rected, weighted hypergraph H = (V, E, w), find an orienta-

tion Λ of H which minimizes maxu∈V [δi
Λ(u)].

This is equivalent to the scheduling problem of offline

makespan minimization over identical parallel machines with

eligibility constraints [18]; according to the three-field notation

by Graham et al. [19], P |Mj , Mj 6= Mk if i 6= k|Cmax. This

is a special case of P |Mj |Cmax, which in turn is a special case

of R||Cmax [20]. The problem is NP-hard [21], but a number

of approximation algorithms and search heuristics have been

proposed.

We present here a local search heuristic based on the

GR/EFF descent of Piersma and Van Dijk [13]. The main

differences are the use of hypergraph notation and some

simplifications made possible by constraints particular to our

problem.

Initialization

Suppose the given hypergraph is H = (V, E, w). Let Λ =
(V, ~E , w), with ~E = ∅ initially.

Starting Point

Consider E in any order. For each e ∈ E, add eu to ~E
such that δi

Λ[u] = minv∈e δi
Λ[v].

Neighbourhood Search

1) Choose vmax ∈ V such that δi
Λ[vmax] = maxv∈V δi

Λ[v].
Let R = {(v, evmax)|v ∈ V \vmax, v ∈ e, evmax ∈ ~E}.

2) If R = ∅, go to Step 4. Otherwise, consider any

(v, evmax) ∈ R; remove (v, evmax) from R.

3) If δi
Λ[v] < δi

Λ[vmax] −w(e), replace evmax with ev in ~E
and go to Step 1. Otherwise, go to Step 2.

4) Sort V in nonincreasing order of indegree. Let v1 and

v2 be its last and first elements, respectively.

5) Let ~E1 = {ev1 |v2 ∈ e, ev1 ∈ ~E} and ~E2 = {ev2 |v1 ∈
e, ev2 ∈ ~E}. Let I = ~E1 × ~E2.



6) If I = ∅, go to Step 8. Otherwise, consider any

(ev1

1 , ev2

2 ) ∈ I; remove (ev1

1 , ev2

2 ) from I.

7) If max(δi
Λ[v1] − w(e1) + w(e2), δ

i
Λ[v2] − w(e2) +

w(e1)) < max(δi
Λ[v1], δ

i
Λ[v2]), replace ev1

1 and ev2

2 ,

respectively, with ev2

1 and ev1

2 in ~E and go to Step 4.

Otherwise, go to Step 6.

8) Let v2 be the next element in V . If v2 = v1, let v1 be the

previous element in V and let v2 be the first element in

V . If v1 is the first element of V , return Λ. Otherwise,

go to Step 5.

V. EXPERIMENTAL RESULTS

A. Description of Simulation

We test task distribution on a simulated network N of 23

camera nodes arranged in a virtual environment with walls and

other occlusions. Our tasks are independent of the directional

dimensions ρ and η; accordingly, we simplify the discussion

by working exclusively in R
3. A top view of the environment

is shown in Figure 3, along with the relevance model R, which

is uniform in z from 1.5m to 2.0m (with the floor at 0m, and

all cameras at 2.5m), and the locations of the cameras.

Fig. 3. Floor Plan and Relevance Model

The camera coverage strength models are derived from real

parameters of a calibrated Prosilica EC-1350 1.3MP grayscale

CCD camera with a Computar M3Z1228C-MP lens. The

specific task parameters used are γ = 20, R1 = 0.3, R2 =
0.01, and cmax = 0.008 (ζ1 and ζ2 are unused). Extrinsic

parameters are defined manually to deploy the cameras in

a reasonable arrangement covering the environment (82.42%

coverage performance with respect to R).

The camera network and environment are simulated using

our Adolphus2 simulation software (Figure 4).

Fig. 4. Adolphus Showing 〈Ci

I
〉 and 〈Ci

M
〉

The coverage hypergraph HC for N and R is computed over

the discrete space Ṙ
3 = {(250x, 250y, 250z)|x, y, z ∈ Z},

with coordinates in millimeters. Although it is too large to

represent here graphically, Table I shows some statistics of

the hyperedges in the complete HC .

TABLE I
HYPEREDGES IN HC

Edge Size Count Mean Weight

1 23 750.51
2 78 155.66
3 130 50.13
4 152 23.49
5 122 14.09
6 61 9.37
7 17 6.40

Total 583 71.85

For each task, events of interest are points p ∈ R
3 generated

randomly using λ−1R as a probability density function, where

λ =
∫∫∫

R3 R dx dy dz. The detection probability for event

p by camera node n is Cn(p). Camera nodes individually

detect events and are assumed to propagate their data to the

appropriate nodes for processing.

B. Task 1: Generic Multi-View Processing

The first simulation experiment models a generic task in

which each event is processed by every combination of camera

nodes which detects it. Processing an event charges one unit

of processing load to the node to which the combination is

assigned (i.e., the vertex in HC which is the head of the edge

comprising the combination).

We generated 10,000 random events and assigned their

processing to nodes according to Λ, the minimum maximum

weighted indegree orientation of HC approximated per the

algorithm in Section IV-B. For comparison, we also assigned

the same event detections using four other orientations of

HC : the optimal unweighted minimum maximum indegree

2Adolphus is free software licensed under the GNU General Pub-
lic License. Python source code and documentation are available at
http://github.com/ezod/adolphus.



Fig. 5. Load Statistics for Task 1

orientation U , two random orientations R1 and R2, and a

greedy orientation G (edges oriented in arbitrary order to the

vertex with least indegree). Figure 5 shows the maximum

and standard deviation of processing loads (with a mean of

1378.39) for each strategy.

The Λ distribution yields both the least maximum load and

the most consistent distribution of load over the network, with

improvements of 5% and 22%, respectively, over the next best

strategy tested.

C. Task 2: Best-Pair Stereo Reconstruction

The second simulation experiment models a best-pair stereo

reconstruction task. Hypothetically, upon detection of an event,

camera nodes estimate their pairwise coverage of the event,

then reach network-wide consensus on the pair with best

coverage; the best pair then proceeds to perform a dense 3D

reconstruction of the event. In our model, each estimation of

pairwise coverage charges one unit of processing load to the

assigned node, and each reconstruction charges five units of

processing load to the assigned node for the best pair.

Fig. 6. Load Statistics for Task 2

We generated 2,000 random events and assigned their

processing to nodes according to Λ, the minimum maximum

weighted indegree orientation of H2
C . Again, we compare this

to the unweighted solution U , two random orientations R1 and

R2, and a greedy orientation G. Figure 6 shows the maximum

and standard deviation of processing loads (with a mean of

373.87) for each strategy.

Again, the Λ distribution yields both the least maximum

load and the most consistent distribution of load over the

network, with improvements of 13% and 35%, respectively,

over the next best strategy tested.

VI. CONCLUSIONS

The coverage hypergraph is a generalization of previous

models of camera network coverage topology which fully cap-

tures node-level coverage relationships. As such, it is a useful

combinatorial structure for optimization in distributed smart

camera applications. We have demonstrated with simulated

experiments its application to optimizing the distribution of

task processing load, by adapting and applying an algorithm

for a related scheduling problem.

This model is conceptually simple, but shows much promise

as a powerful tool given that it has a strong, reliable theoretical

foundation and tractability with a large volume of well-studied

optimization techniques.

A. Future Work

Although the coverage strength model provides an excellent

theoretical basis for defining the coverage hypergraph, in prac-

tice the necessary calibration parameters are often unavailable.

We propose to construct HC probabilistically from sensor

data, following approaches used to construct other topological

models. Cheng et al. [9] build the vision graph by pairwise

matching of digests of local features. The exclusion approach

of Detmold et al. [22], [23] also builds the vision graph,

starting with a complete graph and eliminating (or reducing the

likelihood of) edges when an occupancy mismatch is detected.

Lobaton et al. [12] construct their CN-complex by matching

detection and occlusion events.

Developing such a method would also allow us to attempt

an experimental application using a real camera network

without calibration, with one or more tasks of a less contrived

nature than those in Section V. Our results currently depend

on our assumptions about computational cost and detection

probability holding in practice, since in simulation we have no

means by which to generate events besides the relevance and

coverage strength models, which are also used to construct

the hypergraph itself. Our previous work [4], [17] provides

some evidence that these assumptions are generally valid,

but a complete real-world application would present a more

convincing case.

The particular optimization over HC presented in this work

could be adapted to a variety of more complex task distribution

scenarios. Multiple tasks with different computational costs

could be combined into a single objective. Other problems

aside from task processing distribution may require different

interpretations of HC (e.g. a redefinition of the weight func-

tion) and/or different optimization approaches.

Finally, it is ultimately desirable that any such optimization

algorithms be decentralized, so that they may be computed on

the camera network itself. This is a non-trivial problem and

certainly warrants further investigation.
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