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ABSTRACT

A distributed smart camera network is a collective of vision-

capable devices with enough processing power to execute al-

gorithms for collaborative vision tasks. A true 3D sensing

network applies to a broad range of applications, and local

stereo vision capabilities at each node offer the potential for

a particularly robust implementation. A novel spatial cali-

bration method for such a network is presented, which ob-

tains pose estimates suitable for collaborative 3D vision in a

distributed fashion using two stages of registration on robust

3D features. The method is initially described in a geomet-

rical sense, then presented in a practical implementation us-

ing existing vision and registration algorithms. The method

is designed independently of networking details, making only

a few basic assumptions about the underlying network’s ca-

pabilities. Experiments using both software simulations and

physical devices are designed and executed to demonstrate

performance.

Index Terms— camera network, calibration, collabora-

tive, distributed, registration, 3D vision

1. INTRODUCTION

The relatively new concept of 3D visual sensor networks [2]

is emerging within the area of distributed smart cameras. By

collecting and processing true 3D information, such networks

offer improvements in existing applications and promise en-

tirely new possibilities.

The 3D sensing paradigm includes the use of passive 3D

(stereo) vision, fusion of information from multiple views,

and distributed collaborative processing. Many of the ba-

sic computer vision operations, including shape recognition,

object tracking, motion analysis, and scene reconstruction,

have been improved through one or two of these properties;

we contend that all three in unison yield yet greater bene-

fits. Thus, our work applies to distributed smart stereo cam-

era networks, wherein each node consists of a device capable
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of passive 3D vision and the distributed algorithms operate

primarily or exclusively on 3D data.

In order to perform any useful collaborative processing

of this information, there must exist some way to bring data

from multiple nodes into a common reference frame. This

is achieved through calibration, which includes spatial local-

ization and orientation as well as temporal synchronization.

While some distributed time synchronization methods from

the sensor network literature are applicable, existing localiza-

tion methods are insufficient.

This paper presents a novel scalable spatial calibration

method for distributed smart stereo camera networks. It is

designed independent of node architecture or network details,

and makes few assumptions about node deployment or scene

contents. The problem is reduced to a geometrical form in

Section 3, from which the implementation in Section 4 fol-

lows. A more thorough treatment can be found in [1].

The majority of research in distributed smart cameras to

date has focused on monocular vision at each node. A num-

ber of methods for distributed self-calibration have been pro-

posed for this paradigm, and though the vision components

are not readily applicable to 3D sensing nodes, the general

localization and distribution concepts developed apply to any

vision-based system.

From the perspective of traditional sensor networks, the

primary challenges are the directionality of vision sensors, the

higher degree of accuracy required by vision applications, and

the large volume of raw sensor data. Conversely, from the

perspective of traditional computer vision, the challenge is in

the scalable distribution of processing among nodes and the

related limitations of network bandwidth.

While traditional sensor network methods generally em-

ploy omnidirectional sensors and thus require only localiza-

tion, vision-based networks also require orientation. To apply

similar methods to directional vision sensors, the concept of

the vision graph is introduced in [4], where an edge on the

graph represents shared field of view rather than a communi-

cation link.

Functional calibration methods are presented for monoc-

ular distributed smart cameras in [4, 5]. These are based on
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wide-baseline stereo methods, which are generally not robust

due to the matching problem [13], and require unwieldy ini-

tialization schemes or dictate deployment constraints. Some

methods, such as [6], use motion of objects in the scene to

calibrate, but these still suffer from the matching problem

to a degree and require certain kinds of scene. Potentially

more robust methods are presented in [7, 8]; however, these

require the use of markers or beacons placed in the environ-

ment, which is infeasible in many cases and may constrain

deployment or extension to dynamic calibration.

With the true 3D sensing network paradigm introduced in

[2], advocating distributed smart stereo cameras, a calibration

method called Lighthouse is presented in [3] which uses 3D

features and geographic hash tables (GHTs) to localize and

orient nodes. Our method employs the same basic concept,

but is more complete and addresses some impracticalities in

the former.

2. PRELIMINARIES

2.1. Definitions

2.1.1. Nodes and Groups

A node is the abstract or physical smart stereo camera device

itself; nodes shall be denoted by sequential capital letters (A,

B, and so forth). The set of all nodes in the network shall be

denoted N (where |N| represents the total number of nodes).

A group is a set of nodes which agree on a single leader node;

a group led by node A shall be denoted GA (where |GA| rep-

resents the number of nodes in the group). Every group is a

subset of the full set of nodes (GA ⊆ N), and every node is

a member of exactly one group (so, if GA and GB are two

separate groups, |GA ∩ GB| = 0).

2.1.2. Point Sets and Features

A point set is the full set of interest points detected locally

at a node; the point set of node A shall be denoted SA. The

overlap between point sets SA and SB refers to the size of

the intersection of the two sets |SA ∩ SB|, said intersection

occurring where a point in SA corresponds to the same phys-

ical point as a point in SB . The percent overlap is defined as

follows:

%O(SA, SB) =
|SA ∩ SB|

max(|SA|, |SB|)
× 100% (1)

A feature is any subset of the point set of a certain size (de-

termined by a parameter of the algorithm); when discussing a

single arbitrary feature from node A, it shall be denoted FA,

where FA ⊆ SA. Two features FA and FB , from nodes A and

B respectively, are considered to match (denoted FA ≈ FB)

if each point in FA corresponds to the same physical point as

a point in FB . In the context of the algorithm, it is impossible

to ascertain this correspondence, so the term match implies

rather a presumed match based on a criterion of geometrical

similarity.

2.2. Pose

Pose is a concept used here to describe the relative motion

between two nodes in a distributed smart camera network,

which is the basis of calibration. Each node is considered

to have its own local coordinate system. The relative pose of

node A with respect to node B is denoted PAB , and is the

rigid transformation in 3D Euclidean space from the coordi-

nate system of A to that of B.

The transformation PAB : R
3 → R

3 consists of a rotation

matrix (3 × 3 real orthogonal matrix) RAB and a 3-element

translation vector TAB . PAB maps a point x ∈ R
3 as follows:

PAB(x) = RABx + TAB (2)

The identity pose is denoted PI , and consists of the identity

matrix RI and the zero vector TI .

The inverse of pose PAB , denoted P−1

AB , reverses the pose

transformation (so that P−1

AB = PBA). It can be determined

as follows:

P−1

AB(x) = R
−1

ABx − R
−1

ABTAB (3)

A succession of pose transformations PBC(PAB(x)) can

be composed into a single pose, denoted (PAB ◦PBC)(x), as

follows:

(PAB ◦PBC)(x) = RBCRABx+(RBCTAB +TBC) (4)

This transformation maps from the coordinate system of A
to that of B, then from that of B to that of C; therefore, the

transformation from A to C can be computed via composition

as PAC = (PAB ◦ PBC)(x). This operation is transitive, so

one node’s pose relative to another can be computed indirectly

over an arbitrary number of intermediate poses if they exist.

2.3. Graphs

Three types of undirected graphs are helpful in describing dis-

tributed smart camera calibration: the communication graph,

the vision graph, and the calibration graph [4]. Graphs are

described as connected if there exists a path connecting every

pair of nodes, and complete if there exists an edge between

each pair of nodes.

The communication graph describes the effective commu-

nication links between nodes in the network from the perspec-

tive of the layer presented to the application. A complete

communication graph indicates that any node may commu-

nicate directly with any other node.

The vision graph describes which nodes share significant

portions of their field of view. A pair of nodes have a con-

necting edge in this graph if the volume of space in the inter-

section of their fields of view is considered large enough that



it might contain sufficient data for the operations required by

the algorithm.

The calibration graph describes which nodes have a di-

rect estimate of their pairwise pose. Obviously, it is desirable

that this graph be connected, so that any two nodes X and

Y may estimate their relative pose PXY by composition of

known pose estimates. Edges can only be established where

there exist edges in the vision graph, and the most complete

calibration graph possible is identical to the vision graph.

3. MAIN PROBLEM

3.1. Problem Statement

The overall objective is to spatially calibrate a series of homo-

geneous smart stereo camera nodes, with no a priori knowl-

edge and using only the nodes’ 3D visual data, in a distributed

fashion. Assuming the visual data consists of a set of 3D

points triangulated from stereo images of the environment,

the problem may be reduced to geometrical terms:

Given a set of nodes N, each node X ∈ N hav-

ing a point set SX , estimate the pose PXY for

enough node pairs (X, Y ) such that the calibra-

tion graph for N is connected.

The shared view assumption (3.2.2) and the repeatability cri-

terion of interest point detection (4.2) imply a sufficient de-

gree of overlap between a sufficient number of node pairs for

convergence.

3.2. Assumptions

3.2.1. Pre-Deployment Offline Access

It is assumed that, prior to deployment of the network, there is

a period during which each node may be accessed without re-

striction in a controlled environment, in order to perform cer-

tain essential modifications to software (such as assignment of

a unique identifier, network configuration, and intrinsic/stereo

calibration of the cameras).

3.2.2. Shared View

For full convergence, it is assumed that the vision graph is

connected. This imposes a minimum qualitative constraint on

node deployment that the shared field of view of the entire

network be continuous and have substantial internal pairwise

overlap.

3.2.3. Fixed Nodes

It is assumed that each node is fixed in its location and ori-

entation relative to all other nodes. It is also assumed that,

once internally calibrated for stereo vision, no node changes

the relative motion between its cameras or the internal param-

eters (e.g. focal length) of either of its cameras.

3.2.4. Static Scene

It is assumed that the contents of the scene are fully static

for the purposes of acquiring calibration point sets. This is

solely for simplicity, and could easily be relaxed by employ-

ing background estimation techniques or accurate temporal

synchronization.

3.2.5. Abstract Network

It is assumed that the nodes are capable of autonomously

forming an ad-hoc network of some kind, wherein each node

can be addressed by a unique identifier. From the algorithm’s

point of view, the network is assumed to be fully connected

[17], or in other words, the communication graph is assumed

to be complete. Additionally, it is assumed that arbitrary

amounts of data can be sent with assured delivery.

3.3. Problem Analysis

3.3.1. Two-Stage Registration

Bringing the point sets, and thereby the node coordinate sys-

tems, into alignment with one another can be accomplished

by registration. Registration algorithms may be divided into

two types: coarse registration, which can align points without

an initial estimate but are generally not very accurate; and fine

registration, which require an initial estimate to align points

but are very accurate [9].

For our purposes, no alignment estimate is initially avail-

able, yet high accuracy is desirable. The typical solution when

presented with such a problem is a two-stage approach, us-

ing coarse registration to initialize fine registration. However,

there is more to the problem in our case: it is not even known

which point sets overlap or to what degree. We use a process

of feature matching to determine how to proceed with regis-

tration between nodes.

3.3.2. Feature Matching

In order to find coarse pose estimates between nodes with no

knowledge of their point set overlap in a distributed fashion,

a pairwise feature matching process similar to that described

in [3] can be employed.

The goal is to find pairwise matches between nodes’ fea-

tures, and then use those matches to calculate coarse relative

pose estimates for the node pairs. Both are accomplished

through the coarse registration algorithm; if the registration

error falls below a certain threshold tec, the features are con-

sidered to match, and the registration result yields a coarse

pose estimate between the source nodes.

Consider point sets from two nodes, SA and SB , from

which, according to the coarse matching algorithm, each node

randomly selects a feature of size f ≥ 3, resulting in FA ⊆
SA and FB ⊆ SB where |FA| = |FB | = f ≤ |SA∩SB|. The



performance of the matching scheme depends on the proba-

bility of a match between FA and FB , P (FA ≈ FB), which

can be calculated as follows:

P (FA ≈ FB) =
|SA ∩ SB|!f !(|SA| − f)!(|SB| − f)!

|SA|!|SB |!(|SA ∩ SB| − f)!
(5)

It is therefore desirable to increase |SA ∩ SB| relative to |SA|
and |SB | (i.e., increase the percent overlap), which translates

into repeatability in interest point detection (4.2). There is

a trade-off in the value of f between matching performance

and false matches; generally, a low value such as f = 4 is

adequate.

3.3.3. Feature Categorization

No details have yet been given about how to bring features to-

gether for matching in a distributed fashion. The idea of fea-

ture categorization is borrowed from the data-centric storage

literature, used with reference to distributed smart camera net-

works in [2] and more specifically to their calibration in [3].

The goal is to evenly distribute the processing and storage of

the data in a distributed system based on some quantitative or

qualitative metric of the data itself. For this, a smooth, deter-

ministic geometric descriptor function, denoted g, is used.

The solution space of this descriptor is then divided as

evenly as possible among the nodes in the network, with some

overlap (see below), and features detected locally at each node

are sent to the appropriate node for matching to other geomet-

rically similar features.

Ideally, the difference between the descriptors of two fea-

tures FA and FB describes the degree of difference d between

those features:

d(FA, FB) = |g(FA) − g(FB)| (6)

Based on the measurement accuracy of a node and the specific

coarse registration algorithm used, there is a similarity thresh-

old td, such that it is necessary to compare two features FA

and FB if d(FA, FB) < td, and unnecessary otherwise; this

will be termed the similarity condition. The desirable overlap

for categorization, then, is td/2 in all directions.

Note that categorization, and thus the nodes where fea-

tures are matched, has no relation to the nodes where those

features originated. When a match is found, the result is re-

turned to one of the two source nodes, based on some deter-

ministic selection function such that for a given pair of nodes

the same node is always selected.

3.3.4. Coarse Grouping

In order to guarantee that all nodes with edges on the vision

graph attempt pairwise pose refinement without the need for

exhaustive feature matching, we introduce a grouping scheme

wherein nodes are merged into ever-larger groups within the

same coordinate system, albeit with only coarse estimates.

Through pose composition, any node in a group can deter-

mine its coarse pose with respect to any other node. This is

conceptually similar in some ways to the GHT scheme pro-

posed in [3].

A node always knows its current group leader and the set

of nodes comprising its group. Within a group (2.1.1), each

node has a coarse pose estimate relative to the group leader,

called its group coarse pose estimate, and denoted CA for a

node A. Relative coarse pose estimates (e.g. CAB for node

A relative to node B) can be computed from these, either di-

rectly or through one or more compositions. Initially, each

node begins in a singleton group, of which it is the leader,

with its group coarse pose estimate initialized to PI .

A merge is initiated when two nodes have detected a cer-

tain minimum number tm of consistent matches with each

other. Consistency is enforced via a threshold tc specify-

ing the minimum Euclidean distance between the pose esti-

mates’ mappings of a given point (such as the centroid µS

of the computing node’s point set). Once a node has stored

at least tm matches with a particular other node, each time a

new match is detected for that node, an average coarse pose

estimate is computed for every combination Mi of matches

containing the new match, and checked for consistency:

||Cm(µS) − Cavg(µS)|| ≤ tc, ∀m ∈ Mi (7)

If a consistent average is found, it is considered a reliable

relative coarse pose estimate, and is forwarded to the source

nodes’ group leaders and composed as necessary to merge the

nodes’ respective groups.

Fig. 1. Group Merging

Figure 1 illustrates a typical group merge. Node D, of

group GA, and node G, of group GF , find a relative coarse

pose estimate through feature matching, and initiate a merge.

The nodes in group GA do not modify their group coarse pose

information. Node G’s new group coarse pose estimate (C ′

G)

is the composition of its estimated pose relative to node D
with node D’s group coarse pose estimate:

C ′

G = CGD ◦ CD (8)



The new group coarse pose estimates for the merging group’s

leader (C ′

F ) and any other nodes in the merging group (in

this case, C ′

H) can similarly be calculated as compositions of

known pose estimates:

C ′

F = C−1

G ◦ (CGD ◦ CD) (9)

C ′

H = CH ◦ (C−1

G ◦ (CGD ◦ CD)) (10)

Since merging consists of composition operations, it is a tran-

sitive operation which can occur based on matches (and the

resultant relative coarse pose estimates) between any pair of

nodes in different groups. Figure 1 illustrates this by showing

the actual history of merges leading to the groups as arrows

between the node pairs; in reality, of course, every node in the

group has a direct pose estimate to the leader (group coarse

pose estimate).

3.3.5. Pairwise Pose Refinement

Once a given pair of nodes belong to a group via the feature

matching process, those nodes can use their coarse relative

pose estimate as a starting point for pose refinement. This is

achieved by applying a fine registration algorithm to a large

number of points initialized into coarse alignment.

Fig. 2. Field of View Cone Approximation

As shown in Figure 2, the actual point sets used for fine

registration are selected, at each node, as those falling within

the intersection of the two nodes’ fields of view, as approxi-

mated by a cone of a certain angle and length extending along

the positive z-axis of each node’s coordinate system (via the

coarse pose estimate). If there are fewer than a specified min-

imum number of points, which includes the case where there

is no intersection at all, the nodes do not attempt pose refine-

ment.

3.3.6. Indirect Pose Estimation

A pair of nodes attempting to determine their relative pose can

now communicate directly to find the shortest path along the

existing pairwise fine pose estimates (calibration graph) and

thus obtain a composition with a minimum of error. A node A
may find such an estimate PAB relative to a node B according

to the following algorithm (suppose FPA represents the set of

fine pose estimates at node A):

1. If PAB ∈ FPA, select PAB and end.

2. For each PAX ∈ FPA, request FPX from node X . If

PXB ∈ FPX , select PAB = PAX ◦ PXB and end.

3. For each PXY ∈ FPX , request FPY from node Y . If

PY B ∈ FPY , select PAB = PAX ◦ PXY ◦ PY B and

end.

4. Continue until PAB has been found.

As indirect fine pose estimates are found (even intermediate

ones that were not requested), they should be added to FP to

avoid unnecessary repetition of network requests and compu-

tations.

4. ALGORITHM DESIGN

4.1. Distributed Calibration Algorithm

The algorithm is split into ten distinct processes at each node;

six for coarse grouping, and four for pairwise pose refine-

ment. Each process acts upon receipt of a message, with the

exception of the feature selection process, which executes pe-

riodically, and the pose refinement initiator process, which

executes whenever the group composition is updated.

There are four parameters intrinsic to the algorithm itself,

following from Section 3.3: the feature size f , the similar-

ity threshold td, the match threshold tm, and the consistency

threshold tc. Certain other implementation-specific parame-

ters are also required, notably those for the coarse and fine

registration algorithms; in particular, tec and tef are refer-

enced here as generic error thresholds for the coarse and fine

registration algorithms, respectively.

Fig. 3. Feature Selection Process

Fig. 4. Feature Matching Process



Fig. 5. Match Processing Process

Fig. 6. Group Merge Initiator Process

Fig. 7. Group Merge Responder Process

Fig. 8. Group Update Process

Fig. 9. Pose Refinement Initiator Process

4.2. Interest Point Detection

Three distinct parts of calibration are impacted directly by the

interest point detection algorithm used: the correspondence

algorithm, the coarse matching scheme, and the fine registra-

tion algorithm. In all three cases, it is the repeatability perfor-

mance metric which is of interest; higher repeatability yields

higher overlap in the point sets.

For practical purposes (including the availability of source

Fig. 10. Pose Refinement Responder Process

Fig. 11. Fine Registration Process

Fig. 12. Pose Update Process

code from the authors), the FAST interest point detector [14,

15] is selected for this implementation. Convergence can be

encouraged by constraining nodes to share large portions of

their fields of view or by calibrating on a scene with strong

interest points.

4.3. Registration

Since matching features overlap fully, an excellent solution to

the coarse registration problem is the fully-contained version

of the DARCES algorithm [10], using three control points.

DARCES without the RANSAC component is a relatively

simple algorithm, allowing it to perform rapid matching on

a large number of features.

The concept of the Iterative Closest Point (ICP) algorithm

[11] lends itself well to the fine registration problem encoun-

tered in pairwise pose refinement. However, the difficulty

of stable interest point detection, occlusion effects, and un-

certainty about the overlap in field of view all contribute to

poor overlap in the point sets used for pose refinement. The

Trimmed Iterative Closest Point (TrICP) algorithm [12], used

in this implementation, can be automatically tuned to any de-

gree of overlap, and is applicable to overlaps under 50%.



5. EXPERIMENTS

5.1. Performance Metrics

5.1.1. Convergence

Convergence is the measure of the algorithm’s ability to bring

nodes into a common reference frame and its time perfor-

mance in doing so. For our purposes, there are actually two

distinct considerations:

1. The ability of coarse grouping to merge into a minimum

number of groups.

2. The ability of pairwise pose refinement to establish a

maximum number of pairwise estimates.

Calibration is considered successful in terms of convergence

when coarse grouping merges the entire network into a single

group and pairwise fine pose estimates are established such

that the calibration graph is connected.

5.1.2. Accuracy

Accuracy is the measure of the error in the algorithm’s result-

ing pose estimates. The mean error in a pose estimate can

be determined by averaging the Euclidean distance between a

number of points with ground-truth correspondence, detected

and triangulated at the nodes separately from those used for

calibration. Although error accumulates with the path length

(number of pose compositions) in the calibration graph, it is

more relevant to consider the path length in the vision graph,

since the 3D reconstruction consistency among nodes observ-

ing the same part of the scene is the likely criterion.

5.1.3. Scalability

Scalability is the measure of the effect on the algorithm’s per-

formance of the number of nodes in the network. The three

primary resources to consider are node-local computing re-

sources (i.e. CPU and memory), node-local data storage, and

network bandwidth.

In order to properly evaluate scalability, it is necessary to

examine individual factors arising from the algorithm itself.

The most significant of these can be summarized in terms of

the number of nodes in the network |N| as follows:

• Feature dissemination requires bandwidth resources in

|N| per node.

• Feature matching requires computing and storage re-

sources in |N|.

This assumes that each node maintains a more or less constant

number of pairwise edges in the vision graph regardless of

|N|, as would be the case with most applications. In cases

where this assumption does not hold, it is necessary to add a

third factor:

• Pairwise pose refinement computation requires com-

puting resources in |N|.

Scalability in all three resources can be quantized experimen-

tally in terms of the above factors.

5.2. Manual Point Set

In order to test the capabilities of the calibration algorithm

and tune its parameters under controlled conditions, the first

experiment series is designed to operate on manually selected

points with full correspondences across all four nodes. The

primary purpose of this experiment type, once suitable param-

eters are found, is to test the effects of different point set sizes

and overlap characteristics on convergence and accuracy.

5.2.1. Procedure

A total of 22 point subsets are extracted from the data, and

each is tested using the distributed calibration software, with

all four nodes running locally on the same workstation. This

procedure is repeated twice for each subset, and the average

results for convergence time and mean error are calculated

and recorded.

5.2.2. Results
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Fig. 13. Manual Experiment Results



5.3. Automatic Point Set

Having established some criteria for reasonably timely con-

vergence in the manual point set experiments, the next step is

to test real automatic calibration of the network. The purpose

of these experiments is to test the convergence and accuracy

performance of the algorithm in real conditions.

5.3.1. Procedure

Four instances of the local point detection software, config-

ured to execute the distributed calibration software on com-

pletion, are run in automatic mode on the vision platform

workstation. Convergence time and the final calibration graph

are recorded. A ground truth point set is manually selected

for each camera rig, and the mean error is calculated and

recorded.

5.3.2. Results

The mean error and convergence time of a typical experiment

from this series is shown below. Figure 14 shows the final

calibration graph, Figure 15 shows the physical deployment

of the nodes for the experiment, and Figure 16 shows the vi-

sualization of the resultant pose estimates (which can be seen

to match the configuration in Figure 15).

• Mean Error: 2.7666 mm

• Convergence Time: 159 s

Fig. 14. Calibration Graph for Automatic Experiment

5.4. Virtual Point Set

Since only four physical camera rigs are available, testing

scalability to larger networks is impossible in an automatic

experiment and difficult to control using the manual meth-

ods. Instead, controlled virtual point sets are supplied to the

same calibration algorithm implementation to test the scala-

bility metric.

5.4.1. Procedure

Point sets are generated for 5, 10, 15, 20, and 25 nodes. The

total outgoing bandwidth in kilobytes, final size of the match-

ing database in features, and total number of coarse and fine

registration executions are recorded.

Fig. 15. Camera Deployment for Automatic Experiment

Fig. 16. Pose Visualization for Automatic Experiment

5.4.2. Results

As expected, total bandwidth usage per node increases ap-

proximately linearly in relation to the number of nodes in the

network (Figure 17). This affects different networks in differ-

ent ways. In a network where the physical medium is shared

by all nodes – the worst-case scenario – the total network

bandwidth usage is the relevant factor. In that case, the band-

width usage increases non-linearly, potentially at up to |N|3.

However, many routing methods used in sensor networks are

much more efficient and therefore mitigate this effect.

The number of features stored at each node increases ap-

proximately linearly in relation to the number of nodes (Fig-

ure 18). Features are very small data (a series of f 3-tuples, an

identifier, and a geometric descriptor value), but when scaling

to extremely large networks it must be ensured that adequate

storage is provided at each node for these features.

The number of coarse registration operations performed at

each node increases approximately linearly in relation to the

number of nodes (Figure 19); as expected, this is proportional



Fig. 17. Bandwidth Usage in |N| (Average and Maximum)

Fig. 18. Node-Local Storage in |N| (Average and Maximum)

to the number of features stored. If processing throughput is

the limiting factor, this increase will cause the convergence

time to increase linearly with the number of nodes.

Fig. 19. Coarse Registration Processing in |N| (Average and

Maximum)

Since, in this network, the number of vision graph edges

per node does not generally increase as its total number of

nodes increases, the number of fine registrations per node is

approximately constant.

6. CONCLUSIONS

A calibration method for distributed smart stereo camera net-

works has been developed which converges well, provides ac-

curate pairwise orientation, and scales well to large networks.

This provides a base upon which to build a full 3D visual

sensor network providing primitive data-centric queries, upon

which in turn a variety of high-level applications can be de-

veloped.

Currently, the algorithm makes it possible for smart stereo

camera devices to self-localize and self-orient relative to one

another in a distributed fashion, allowing for various subse-

quent stages of realization for a variety of applications. The

immediate opportunity is to provide a generalized framework

for building these solutions, which would rest on the underly-

ing assumption that the network is accurately calibrated and

can perform 3D reconstruction across multiple views.

The major implementation drawback is the instability of

interest point detection in the general case; at present, it is

necessary to control the scene somewhat by adding one or

more calibration targets for convergence to occur reliably. Im-

proving this situation is an important avenue for future work.
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